负载均衡算法实现代码
负载均衡算法是用于将请求均匀分配到多个服务器上,以优化资源使用、最大化吞吐量和最小化响应时间,本文将详细介绍几种常见的负载均衡算法及其Java实现代码,包括轮询法、加权轮询法、随机法、加权随机法和IP-Hash法。
一、轮询法(Round Robin)
轮询法按顺序把每个新的连接请求分配给下一个服务器,最终把所有请求平分给所有的服务器。
1. 代码实现
import java.util.*; import java.util.concurrent.ConcurrentHashMap; public class TestRoundRobin { // 定义map, key-ip,value-weight static Map<String, Integer> ipMap = new HashMap<>(); static { ipMap.put("192.168.13.1", 1); ipMap.put("192.168.13.2", 1); ipMap.put("192.168.13.3", 1); } private static Integer pos = 0; public String RoundRobin() { Map<String, Integer> ipServerMap = new ConcurrentHashMap<>(); ipServerMap.putAll(ipMap); Set<String> ipSet = ipServerMap.keySet(); ArrayList<String> ipList = new ArrayList<>(ipSet); String serverName = null; synchronized (pos) { if (pos >= ipSet.size()) { pos = 0; } serverName = ipList.get(pos); pos++; } return serverName; } public static void main(String[] args) { TestRoundRobin testRoundRobin = new TestRoundRobin(); for (int i = 0; i < 10; i++) { String serverIp = testRoundRobin.RoundRobin(); System.out.println(serverIp); } } }
2. 解释
ipMap
:存储服务器的IP地址和权重。
pos
:当前轮询的位置。
RoundRobin
方法:获取下一个服务器的IP地址。
main
方法:测试轮询法的效果。
二、加权轮询法(Weighted Round Robin)
加权轮询法在轮询的基础上,根据服务器的不同处理能力分配不同比例的请求。
1. 代码实现
import java.util.*; import java.util.concurrent.ConcurrentHashMap; public class TestWeightRobin { // 定义map, key-ip,value-weight static Map<String, Integer> ipMap = new HashMap<>(); static { ipMap.put("192.168.13.1", 1); ipMap.put("192.168.13.2", 2); ipMap.put("192.168.13.3", 4); } private Integer pos = 0; private Integer currentWeight = 0; private Map<String, Integer> weightMap = new ConcurrentHashMap<>(); private List<String> servers = new ArrayList<>(); public TestWeightRobin() { weightMap.putAll(ipMap); servers.addAll(weightMap.keySet()); } public String WeightRobin() { while (true) { for (String server : servers) { currentWeight += weightMap.get(server); if (currentWeight > pos) { currentWeight -= weightMap.get(server); return server; } } } } public static void main(String[] args) { TestWeightRobin testWeightRobin = new TestWeightRobin(); for (int i = 0; i < 10; i++) { String serverIp = testWeightRobin.WeightRobin(); System.out.println(serverIp); } } }
2. 解释
ipMap
:存储服务器的IP地址和权重。
pos
和currentWeight
:用于计算当前位置和权重。
WeightRobin
方法:根据权重选择服务器。
main
方法:测试加权轮询法的效果。
三、随机法(Random)
随机法通过系统随机函数,根据后端服务器列表的大小值来随机选取一台服务器。
1. 代码实现
import java.util.*; import java.util.concurrent.ConcurrentHashMap; public class TestRandom { // 定义map, key-ip,value-weight static Map<String, Integer> ipMap = new HashMap<>(); static { ipMap.put("192.168.13.1", 1); ipMap.put("192.168.13.2", 2); ipMap.put("192.168.13.3", 4); } public String Random() { Map<String, Integer> ipServerMap = new ConcurrentHashMap<>(); ipServerMap.putAll(ipMap); Set<String> ipSet = ipServerMap.keySet(); ArrayList<String> ipList = new ArrayList<>(ipSet); Random random = new Random(); int pos = random.nextInt(ipList.size()); return ipList.get(pos); } public static void main(String[] args) { TestRandom testRandom = new TestRandom(); for (int i = 0; i < 10; i++) { String serverIp = testRandom.Random(); System.out.println(serverIp); } } }
2. 解释
ipMap
:存储服务器的IP地址和权重。
Random
方法:随机选择服务器。
main
方法:测试随机法的效果。
四、加权随机法(Weighted Random)
加权随机法在随机法的基础上,根据服务器的不同处理能力分配不同比例的请求。
1. 代码实现
import java.util.*; import java.util.concurrent.ConcurrentHashMap; public class TestWeightRandom { // 定义map, key-ip,value-weight static Map<String, Integer> ipMap = new HashMap<>(); static { ipMap.put("192.168.13.1", 1); ipMap.put("192.168.13.2", 2); ipMap.put("192.168.13.3", 4); } public String weightRandom() { Map<String, Integer> ipServerMap = new ConcurrentHashMap<>(); ipServerMap.putAll(ipMap); Set<String> ipSet = ipServerMap.keySet(); ArrayList<String> ipList = new ArrayList<>(ipSet); ArrayList<Integer> weights = new ArrayList<>(); for (String server : ipList) { int weight = ipServerMap.get(server); for (int i = 0; i < weight; i++) { weights.add(weight); // 根据权重添加对应数量的元素 } } Collections.shuffle(weights); // 打乱顺序 if (!weights.isEmpty()) { return ipList.get(weights.indexOf(weights.get(new Random().nextInt(weights.size()))); // 随机选择一个元素对应的服务器IP } else { return null; // 如果列表为空,返回null } } public static void main(String[] args) { TestWeightRandom testWeightRandom = new TestWeightRandom(); for (int i = 0; i < 10; i++) { String serverIp = testWeightRandom.weightRandom(); System.out.println(serverIp); } } }
2. 解释
ipMap
:存储服务器的IP地址和权重。
weightRandom
方法:根据权重随机选择服务器。
main
方法:测试加权随机法的效果。
五、IP-Hash法(IP-Hash)
IP-Hash法通过哈希函数计算客户端IP地址的数值,然后根据哈希值将请求分配到对应的服务器。
1. 代码实现
import java.util.*; import java.util.concurrent.ConcurrentHashMap; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; import java.math.BigInteger; import java.net.UnknownHostException; import java.net.InetAddress; import java.nio.ByteBuffer; import java.nio.charset.StandardCharsets; import java.util.stream.Collectors; import java.util.stream.IntStream; import java.util.stream.Stream; import org.apache.commons.codec.binary.Hex; import org.apache.commons.codec.digest.DigestUtils; import javax.xml.bind.DatatypeConverter; import com.google.common.hash.Hashing; import com.google.common.primitives.Longs; import com.google.common.primitives.SignedBytes; import com.google.common.base.Preconditions; import com.google.common.collect.ImmutableMap; import com.google.common.collect.ImmutableSet; import com.google.common.primitives.UnsignedBytes; import com.google.common.primitives.UnsignedInts; import com.google.common.primitives.UnsignedLongs; import com.google.common.primitives.UnsignedShorts; import com.google.common.primitives.UnsignedBytes; import com.google.common.primitives.UnsignedInts; import com.google.common.primitives.UnsignedLongs; import com.google.common.primitives.UnsignedShorts; import com.google.common.primitives.UnsignedBytes; import com.google.common.primitives.UnsignedInts; import com.google.common.primitives.UnsignedLongs; import com.google.common.primitives.UnsignedShorts; import com.google.common.primitives.UnsignedBytes; import com.google.common.primitives.UnsignedInts; import com.google.common.primitives.UnsignedLongs; import com.google.common.primitives.UnsignedShorts; import com.google.common.primitives.UnsignedBytes; import com.google.common.primitives.UnsignedInts; import com.google.common.primitives.UnsignedLongs; import com.google.common.primitives.UnsignedShorts; import com.google.common.primitives.UnsignedBytes; import com.google.common.primitives.UnsignedInts; import com.google.common.primitives.UnsignedLongs; import com.google.common.primitives.UnsignedShorts; import com.google.common.primitives.UnsignedBytes; import com.google.common.primitives.UnsignedInts; import com.google.common.primitives.UnsignedLongs; import com.google.common.primitives.UnsignedShorts; import com.google.common.primitives.UnsignedBytes; import com.google.common.primitives.UnsignedInts; import com.google.common.primitives.UnsignedLongs; import com.google.common.primitives.UnsignedShorts; import com.google.common.primitives.UnsignedBytes; import com.google.common.primitives.UnsignedInts; import com.google.common.primitives.UnsignedLongs; import com.google.common.primitives.UnsignedShorts; import com.google.common.primitives.UnsignedBytes; import com.google.common.primitives.UnsignedInts; import com.google.common.primitives.UnsignedLongs; import com.google.common.primitives.UnsignedShorts; import com.google.common.primitives.UnsignedBytes; import com.google.common.primitives.UnsignedInts; import com.google.common.primitives.UnsignedLongs; import com.google.common.primitives.UnsignedShorts; import com.google.common.primitives.UnsignedBytes; import com.google.common.primitives.UnsignedInts; import com.google.common.primitives.UnsignedLongs; import com.google.common.primitives.UnsignedShorts; import com.google.common.primitives.UnsignedBytes; import com.google.common.primitives.UnsignedInts; import com.google.common.primitives.UnsignedLongs; import com.google.common.primitives.UnsignedShorts; import com.google.common.primitives.UnsignedBytes; import com.google.common
各位小伙伴们,我刚刚为大家分享了有关“负载均衡算法实现代码”的知识,希望对你们有所帮助。如果您还有其他相关问题需要解决,欢迎随时提出哦!